- completely reducible space
- вполне приводимое пространство
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… … Wikipedia
Emmy Noether — Amalie Emmy Noether Born 23 March 1882(1882 03 23) … Wikipedia
Modular representation theory — is a branch of mathematics, and that part of representation theory that studies linear representations of finite group G over a field K of positive characteristic. As well as having applications to group theory, modular representations arise… … Wikipedia
Lie algebra representation — Lie groups … Wikipedia
Perron–Frobenius theorem — In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding… … Wikipedia
Module (mathematics) — For other uses, see Module (disambiguation). In abstract algebra, the concept of a module over a ring is a generalization of the notion of vector space, wherein the corresponding scalars are allowed to lie in an arbitrary ring. Modules also… … Wikipedia
Unitary representation — In mathematics, a unitary representation of a group G is a linear representation π of G on a complex Hilbert space V such that π( g ) is a unitary operator for every g ∈ G . The general theory is well developed in case G is a locally compact… … Wikipedia
Regular representation — In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself. ignificance of the regular representation of a groupTo say… … Wikipedia
Semisimple Lie algebra — In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras, i.e., non abelian Lie algebras mathfrak g whose only ideals are {0} and mathfrak g itself. It is called reductive if it is the sum of a semisimple and an… … Wikipedia
Phenomenology (The beginnings of) — The beginnings of phenomenology Husserl and his predecessors Richard Cobb Stevens Edmund Husserl was the founder of phenomenology, one of the principal movements of twentieth century philosophy. His principal contribution to philosophy was his… … History of philosophy
PHILOSOPHY, JEWISH — This article is arranged according to the following outline: WHAT IS JEWISH PHILOSOPHY? recent histories of jewish philosophy biblical and rabbinic antecedents bible rabbinic literature hellenistic jewish philosophy philo of alexandria biblical… … Encyclopedia of Judaism